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Abstract

Relationships have been established between the average conversion degree and the dissociation

time for polydisperse granular material, taking its grain size distribution into account. It has been

checked in which cases the kinetic curves obtained by a numerical solution can be described in terms

of KEKAM equation.

Keywords: KEKAM equation, kinetics, thermal dissociation of solids

Introduction

The general description of the macromechanism of thermal dissociation of solids by

means of the well-known kinetic equations, is usually based on the single grain model

[1–10]. If the reaction system contains W grains of identical initial size, then the ki-

netic equation should not change, because the transformation degree for W equal

grains is calculated analogously to that for a single grain.

In the case of polydisperse systems (with different grain size) the transformation

degree is different for grains with different initial dimensions and it can be described

by the following relation:

α = − −∫1 1[ ( )] ( )α R f R Ri

R =0

R=R

d

i

m

(1)

where α – mean value of transformation degree, α(Ri )∈ <0;1>, α(Ri ) – transformation

degree for grain fraction with initial radius Ri, f(R) – density function for the grain

size distribution, characteristic for polydisperse system, Rm – initial radius of the larg-

est grains, present in the reaction system.

In the case of thermal dissociation of the type Asolid →Bsolid+Cgas, the rate of mi-

gration of the solid phase boundary: starting material –product (i.e. the zone of chem-

ical reaction) in a single grain (or in the system of W identical grains) can be de-
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scribed by equations proposed by Huttig (also referred to as Spancer–Topley equa-

tion) or by Jander:

a) for the kinetic region (where the total rate of the process is limited by the rate

of chemical reaction ):

1 1 1 3 1− − =( ) /α k

R
t

i

(2)

b) for the diffusion region (where the total rate of the process is limited by the

diffusion rate in the layer of solid product formed on the grain of starting material):

[ ( ) ]/1 1 1 3 2 2− − =α k

R
t

i

(3)

where k1, k2 – rate constants for the kinetic and diffusion regions of the process, re-

spectively; t – time elapsed from the start of decomposition.

Until now, the possibility of applying the kinetic Eqs (2) and (3) to the descrip-

tion of the process of thermal dissociation in the systems of non-uniform grain size

has been checked for the cases of:

a) normal distribution, characteristic of mechanically or manually disintegrated

material, for which the density function is described as follows:

f R
R R
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(4)

and the cumulative distribution function is given by the relationship:

F R
B

B R R( ) exp[ ( ) ]z z z

R

d
z

= − −
−∞
∫π

1 2 (5)

In this equations: δ – variance, R – mean grain radius, B= R/2δ2, Rz=R/R
b) the Rosin–Rammler–Sperling distribution, characteristic of materials ob-

tained by crystallisation, for which the density function is described as follows :

ϕ( ) expR n
R

R
R
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(6)

and the distribution function assumes the form:

Φ( ) exp( )R R= − −1 z

n (7)

where n – parameter, characteristic of grain size distribution, the value of n can be de-

termined from the relationship between log log(1/y) and logR (y is weight fraction of

grains of R>Ri).
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A dimensionless variable Rz=R/R has been introduced to the kinetic Eqs (2) and

(3) and maximum transformation time (tm,i) has been calculated for the fraction of ra-

dius Ri. For the kinetic range we have obtained:

t
R

k

R R

k
m,i

i

1,i

z,i

1,i

= = (8)

and for the diffusion region:

t
R

k

R R

k
m,i

i

2,i

z,i

2,i

= =
2 2 2

(9)

For the kinetic region it has been determined:

θ k,i

1,i m,i

z,i= =
k t

R
R (10)

and for the diffusion region

θ d,i

2,i m,i

z,i= =
k t

R
R

2

2 (11)

After having introduced the relationships (8) and (10), as well as (9) and (11) to

the kinetic Eqs (2) and (3) it has been found that, these equations are identical. There-

fore, it has become possible to take into account only two Eqs, (12) and (13), for

which the distribution function and the relation dR=RdRz=Rdθ for the normal (12)

and Rosin–Rammler–Sperling (13) distribution, respectively:

α = − −
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From Eq. (12) the values of α have been calculated for B=∈ <0.01; 1000> and for

θ∈ <0.001; 2>. The kinetic curves obtained were treated by means of Eqs (2) and (3).

The value of α from Eq. (13) was calculated for n=n∈ <1.00; 3.00> and for θ∈ <0.001;

2>. The kinetic curves obtained were described by Eqs (2) and (3).

The calculations have shown, that in the case of normal distribution the thermal dis-

sociation of polydisperse material can be described only by means of Eq. (2) and only for

the values of B≥20, whereas in the case of the Rosin–Rammler–Sperling distribution

only Eq. (3) was applicable and only for n=1, and for n slightly greater than 1.

The description of the kinetics by means of Eq. (2) with the condition:

B
R= ≥

2

22
20

δ
(14)
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shows, that for R=1 the mean deviation may not exceed the value 0.158 (δ≤0.158).

The mathematical description of the process under consideration, by means of

Eq. (2), becomes possible only in cases where R fulfils the condition R∈ <0.5; 1.5> i.e.

when the range of variation of R is comparatively small.

In the cases where the grain size distribution is of the Rosin–Rammler–Sperling

type the nature of the decomposition depends on the value of n, and for every value of

n the distribution function and the density function may assume various forms [1].

The mathematical description of thermal dissociation of polydisperse material

by means of Eq. (3) is possible in quite a large range of variability of R ((R/R∈ <0; 4>),

if n=1 or slightly exceeds the value of 1, i.e. where the Rosin–Rammler–Sperling

distribution is similar to the exponential distribution.

The results of the calculations have shown that the type and the nature of grain

size distribution of a polydisperse reacting material should be taken into account in

the analysis of kinetic data, since it determines the possibility of their mathematical

processing.

Formulation of the problem

The aim of the first stage of this work was check the possibility of using other kinetic

equations for describing the process of thermal dissociation occurring in the polydisperse

system.

We have started with the following equation :

− − =ln( )1 α kt n (15)

sometimes referred as Avrami–Erofeev (AE) or KEKAM (Kazaev–Erofeev–Ko³mo-

garov–Avrami–Mampel) equation (F1).

Equation (15) has been used for the description of many reactions of thermal dis-

sociation. Although it has been derived with assumption, that the process of thermal

dissociation of the type Asolid→Bsolid+Cgas is controlled by the rate of nucleation of the

new phase and migration of the substrate – product boundary due to the growth of the

nuclei, its great advantage is the very good description of the kinetic curves of the

topochemical processes at different values of n. So, e.g. for n=1 Eq. (15) describes

very well the kinetic curves of 1st order reactions, for n=0.63 – the kinetic curves

characteristic of 2nd order reactions, and of n=0.5 – reactions in the diffusion region.

The possibility of using KEKAM equation for mathematical description of the

process of thermal dissociation of polydisperse substances has been checked for the

systems, in which the grain size is described in terms of the normal and Rosin–

Rammler–Sperling equations, i.e. where the grain size distribution density functions

are given by Eqs (4) and (6), and the distribution functions by Eqs (5) and (7), respec-

tively.

A dimensionless variable Rz=R/R is introduced into Eq. (4) and the maximum

time of transformation of the fraction Ri is calculated. The equation loses its physical

sense for α=1, hence α=0.99 has been accepted for tm,i.
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Assuming, that n=1 Eq. (15) accepts the form:

− − =ln( )1 α kt (16)

taking k=ki/Ri we obtain for a fraction of radius Ri:

− − =ln( )1 α k t

R

i i

i

(17)

hence, for a fraction of radius Ri and α=0.99 we obtain:

t
R

k
m,i

i

i

=46. (18)

the relation kitm,i=4.61Ri may be regarded as dimensionless variable θ, hence:

θ= =k t Ri m,i z,i
(19)

Assuming, that R=1 the transformation degree α(Ri) for selected fractions and

known maximum time tm,i can be checked with the use of Eq. (16).

Transformation of the Eq. (16) for a fraction of radius Ri gives:

α ( )R i

–k t /R
e i m,i i= −1 (20)

and from relation (18) we obtain:

α = −1 4 61
e

– . (21)

hence α=1–0.01=0.99 in conformity with the assumption.

If we put in Eq. (1) the transformed relationship (16) and the density function

f(R) for the normal distribution, and when dR=RdRz=Rdθ, we obtain:
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Since θ=kitm,i we have:

α θ( ) –R i e= −1 (23)
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Equation (24) comprises the terms: 1 2/δ π and –1/2[(R–1)/δ]2. We insert a

dimensionless variable B=1/2δ2 to the former of them with assumption R=1. Then

δ2=1/2B hence:

δ= 1

2B
(25)
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The other expression is transformed into the following form, taking into account

the value of δ2 and Eq. (19):

− − =− −
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Introducing the relationships (25) and (26) into (24) gives the following expres-

sion for α in the normal distribution :

α= − − −

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∫1 1 2
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e di

m

–
exp[ ( ) ] (27)

An analogous solution applied for the case of Rosin–Rammler–Sperling distri-

bution, under identical assumptions, gives the following relation:

α= − −

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








∫1

1

n e di

m

n–1 n–
exp( )

θ

θ

θ

θ θ θ (28)

Calculation results and discussion

1. The Turbo Pascal 6.0 language has been applied for developing the program Kinet 1
(Annex 1) which enables:

a) calculation of the values of α for B∈ <0.001; 1000> at θ∈ <0.001; 2> by means

of Eq. (27);

b) finding the kinetic curves of the function α=f(θ) for any values of B de-

scribed as above. The process of finding the kinetic curves α=f(θ) consists in entering

successive values of B and θ∈ <0.001; 2>; to the program which calculates the kinetic

curves and displays its image on the screen. After appropriate scanning of B values in

the range B∈ <1; 22> it has become possible to find those values for which the kinetic

curves begin at the origin. These were the values in the range B∈ <3; 7>. The results of

calculations of α=f(θ) are shown in Figs 1a and 1b.

The procedure has been applied using Eq. (27) for the normal distribution.

2. A similar procedure was also applied for deriving the kinetic curves for the

Rosin–Rammler–Sperling distribution with the use of Eq. (28). In this case the values

of n and θ were entered into the computer program using the values of n∈ <0.001; 4>

and θ∈ <0.001; 2>. From among all kinetic curves of α=f(θ) only those were taken

into account, which had their beginning in the origin of the co-ordinate system, i.e.

where n∈ <0.03; 0.09>. The results of the calculations are shown in Fig. 2.

Only those kinetic curves, that begin in the origin of co-ordinate system have

been utilised for further processing. In the case of normal distribution they were the

curves obtained for B=3, 4, 5, 6, 7, and for the Rosin–Rammler–Sperling – the curves
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Fig. 1 Kinetic curves: a – for B∈ <1; 22>, b – for B∈ <3; 7>

Fig. 2 Kinetic curves of Rosin–Rammler–Sperling distribution for n∈ <0.03; 0.09>
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Fig. 3 Kinetic curves calculated from Eq. (16): a – for B∈ <1; 22>; b – for B∈ <3; 7>,
c – for Rosin–Rammler–Sperling distribution



obtained for n=n∈ <0.03; 0.09>. The results are shown in Fig. 3a and 3b (for the nor-

mal distribution), and Fig. 3c (for the Rosin–Rammler–Sperling distribution).

The possibility of using Eq. (16) for the description of thimble dissociation of poly-

disperse solids has been checked by the linear approximation of the curves obtained for

the normal distribution and for selected values of B with the aim of establishing which

ranges of the kinetic curve can be described in terms of that equation. Joint approxima-

tion of all the curves selected (Fig. 4a) and approximation of single curves (Fig. 4b, 4c,

4d, 4e, 4f ) failed because of the very large value of variance and small regression.

For that reason attempt has been made to carry out the stepwise approximation

of selected sections of the curves.

In the first step the curves obtained for B=3; 4; 5; 6 and 7 were divided into two

sections from θ1=0.01 to θ2 =0.8006 and from θ3=1.18041 to θ4=1.630185. The val-

ues of regression r2 and variance δ were calculated for each section of all the curves

(Fig. 5).

In the second step the middle section of all the curves approximated from

θ2=0.8006 to θ3=1.18041 and the values of regression and variance were determined.

The results are shown in Fig. 5.
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Fig. 4 Approximation of curves for normal distribution: a – total approximation, b–f – in-
dividual approximation
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Fig. 5 Approximation of curves by sections: a – for two sections, b – for three sections
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Table 1 The results of calculations

Normal distribution

The values of B B=3 B=4 B=5 B=6 B=7

The boundary of changing of (α) for
Eq. (27)

0.01585–0.984 0.0059–0.989 0.0027–0.9893 0.00157–0.989 0.0012–0.989

The boundary of changing of –ln(1–α)
0.016–1.186
1.186–2.313
2.313–4.547

0.0059–1.142
1.142–2.380
2.380–4.546

0.0027–1.1085
1.1085–2.441
2.441–4.5328

0.0157–1.082
1.082–2.320
2.320–4.6036

0.0012–1.059
1.059–2.346
2.346–4.531

The boundary of changing of (α) for
Eq. (16)

0.01585–0.695
0.695–0.9011
0.9011–0.989

0.0059–0.682
0.682–0.9071
0.9071–0.989

0.0027–0.669
0.669–0.9139
0.9139–0.989

0.00157–0.669
0.669–0.91838
0.91838–0.989

0.0012–0.662
0.662–0.9233
0.9233–0.989

Variance (δ) at total approximation 0.01071742 0.01431362 0.01724538 0.0204185 0.02170669

Regression 0.9352 0.9194 0.9045 0.8898 0.8779

The variance of curves at
approximation by sections

0.000359921
0.0000111945
0.000003118

0.000408832
0.00001965
0.000002317

0.00041375
0.000030582
0.000001785

0.00039424
0.000044112
0.000001551

0.00036125
0.0041334

0.000001162

Regression 0.9881
0.9956
0.9951

0.9856
0.9938
0.9958

0.9843
0.9919
0.9963

0.9839
0.9898
0.9964

0.842
0.9877
0.9967

The boundary of changing of (α) at
finding the logarithm

0.01585–0.901
0.901–0.989

0.0059–0.907
0.907–0.989

0.0027–0.9139
0.9139–0.989

0.00157–0.918
0.918–0.989

0.0012–0.9233
0.9233–0.989

Regression at finding the logarithm 0.998 0.9942 0.9894 0.984 0.9786

Regression of the logarithmed section 0.9983 0.9985 0.9988 0.9991 0.9993

Rosin–Rammler–Sperling distribution

The values of n 0.030 0.04 0.05 0.06 0.07 0.08 0.09

The boundary of changing of (α)
0.841511
0.989923

0.753283
0.989785

0.695259
0.989894

0.638520
0.989939

0.583014
0.989664

0.528642
0.989699

0.475346
0.989975

Regression 0.9996 0.9994 0.9991 0.9987 0.9983 0.9976 0.9968



The difficulties connected with interpretation of the curves divided into three

sections have led to a necessity of searching for another solution of the problem. Af-

ter having studied many possibilities it has been found that taking the logarithm of

Eq. (16) may lead to an acceptable solution, since it enables to get a linear approxima-

tion of the straight lines, for selected values of B after addition of a certain constant in

order to shift the scale of the diagram. Such a procedure has made it possible to obtain

ideal straight lines for the values of B=3 and B=4, and an approximation very close to

straight lines, for B=5, B=6 and B=7. The results are shown in Fig. 6.

The first section of the curve between θ1=0.001 and θ2=0.8006 is a straight line.

For this reason only for the approximation of the second section of the curves be-

tween θ2=0.8006 and θ4=1.630185 it was necessary to logarithm the Eq. (16). The re-

sult of this action, in the form of a straight line, is shown in Fig. 7. The variance and

the mean deviation have been calculated with the air of α. The calculations have been

made for α∈ <0.016; 0.99>.

The values of α from Eq. (28) for the Rosin–Rammler–Sperling distribution

have been determined with the aid of program (Kinet 2), also using the language

Turbo Pascal 6.0 (Annex 2). The calculations were carried out for the values of

n∈ <0.01; 4> and for θ∈ <0.001; 2>. The kinetic curves obtained n=n∈ <0.03; 0.09>, are

shown in Fig. 2. Equation (16) has been used for further processing of the results. The

curves –ln(1–α)=f(θ) obtained for selected values of n are shown in Fig. 3c.
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Fig. 6 Total finding the logarithm for curves of normal distribution
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Fig. 7 Linear approximation for: a – first section of curves, b – second logarithmed section



Linear approximation of the curves obtained for each value of n has been shown

in Fig. 8. The calculations have shown that in the case of normal distribution of grain

size the process of thermal dissociation of polydisperse material can be described by

Eq. (16) for B=3, 4, 5, 6, and 7 only in individual sections (see data of Fig. 7 and data

from the Table). Equation (16) describes the process of thermal dissociation of poly-

disperse material in the case of Rosin–Rammler–Sperling for n=n∈ <0.03; 0.09>. The

results are shown in Fig. 8.

The determination of the value of R made it possible to calculate the value of dis-

tribution function and density function for R=1; R∈ <0.5; 1.5> in normal distribution.
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Fig. 8 Approximation of curves of Rosin–Rammler–Sperling distribution
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Fig. 9 Density functions and distribuants: a – for normal distribution, b – for Rosin–
Rammler–Sperling distribution



The values of mean deviation have also been calculated for selected values of

B
R

R= =
2

22
1

δ
for .

B 3 4 5 6 7

δ 0.408 0.354 0.316 0.289 0.267

For R=1 the mean deviation can not exceed 0.408 (δ=0.408). The results of cal-

culation of the density function and distribution function are represented in Fig. 9a.
In the case of polydisperse material with Rosin–Rammler–Sperling distribution

the character of distribution only slightly depends on the value of n; the values of dis-
tribution function and density function have been calculated for different n values by
means of Eqs (6) and (7), for R∈ <0; 4.5>. They are shown in Fig 9b.

Conclusions

Mathematical description of the process of thermal dissociation of polydisperse material

with normal distribution of grain size is possible with the use of Eq. (16), if R∈ <0.5; 1.5>,

i.e. for narrow range of R. On the other hand, in the case of Rosin– Rammler–Sperling

distribution much wider range of R is admissible, namely R∈ <0; 4.5>, but only for very

small values of n which means, that the use of that equation for this type of grain size dis-

tribution is admissible only for very small ranges of variability of α.

Symbols

k [mm s–1]

B [mm2]

R, R [mm]

Rz, θ [–]
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